Skip to main content

Questions tagged [set-theory]

forcing, large cardinals, descriptive set theory, infinite combinatorics, cardinal characteristics, forcing axioms, ultrapowers, measures, reflection, pcf theory, models of set theory, axioms of set theory, independence, axiom of choice, continuum hypothesis, determinacy, Borel equivalence relations, Boolean-valued models, embeddings, orders, relations, transfinite recursion, set theory as a foundation of mathematics, the philosophy of set theory.

4 votes
1 answer
319 views

For $n\in\omega$ and $x$ a real let $C_n^x$ be the canonical $\Pi^1_n(x)$-complete set. E.g. $C_1^x=\mathcal{O}^x$, etc. I recall seeing long ago the fact that, assuming large cardinals (precisely: ...
Noah Schweber's user avatar
1 vote
1 answer
193 views

Let ${}^\omega\omega$ denote the set of functions $f:\omega\to \omega$. For $f, g \in {}^\omega\omega$ we define $f\leq^* g$ if there is $N\in\omega$ such that $f(n)\leq g(n)$ for all $n\in \omega$ ...
Dominic van der Zypen's user avatar
4 votes
1 answer
255 views

The counting measure on $\mathbb{R}^n$ is a map that takes a subset $A$ of $\mathbb{R}^n$ and returns its cardinality if it is finite or the symbol $\infty$ if it is infinite. So, if $A\subseteq\...
Cosine's user avatar
  • 1,038
0 votes
0 answers
165 views

I am reading Kunen's books on set theory and logic. In his approach, the metatheory is finitistic (which can be approximated in PRA). This implies that in the finitistic metatheory, one can do formal ...
Link L's user avatar
  • 225
-11 votes
0 answers
147 views

I encountered this mathematical structure but need help decoding the notation: [ T = \prod_{i=1}^{\infty} \mathbb{N} ] with hierarchy levels: $!1, !2, !3\ldots$ $T1G, T1H, T1B\ldots$ $A1, A2, A3\...
tea no's user avatar
  • 1
4 votes
0 answers
115 views

It's well known (and not so hard to prove directly) that for any topological space $X$ the group $C^b(X, \mathbb Z)$ — locally constant functions taking only finitely many values — is a free abelian ...
Denis T's user avatar
  • 5,926