I am using Spark MLlib with DataFrame API, given the following sample code:
val dtc = new DecisionTreeClassifier()
val testResults = dtc.fit(training).transform(test)
Can I calculate the model quality metrics over the testResult using the DataFrame API?
If not, how do I correctly transform my testResult (containing "label", "features", "rawPrediction", "probability", "prediction") so that I can use the BinaryClassificationMetrics (RDD API)?
NOTE: I am interested in the "byThreshold" metrics as well