I am modelling the longitudinal relationships between three observed variables:
behavior (binary: 0/1)
affect (continuous)
wellbeing (5-point Likert scale)
The baseline year is 2008, and I have repeated measures every two years until 2018. Here is a version of my lavaan model:
model <- '
behavior_2010 ~ affect_2008 + wellbeing_2008 + behavior_2008
behavior_2012 ~ affect_2010 + wellbeing_2010 + behavior_2010
behavior_2014 ~ affect_2012 + wellbeing_2012 + behavior_2012
behavior_2016 ~ affect_2014 + wellbeing_2014 + behavior_2014
behavior_2018 ~ affect_2016 + wellbeing_2016 + behavior_2016
affect_2010 ~ behavior_2008 + wellbeing_2008 + affect_2008
affect_2012 ~ behavior_2010 + wellbeing_2010 + affect_2010
affect_2014 ~ behavior_2012 + wellbeing_2012 + affect_2012
affect_2016 ~ behavior_2014 + wellbeing_2014 + affect_2014
affect_2018 ~ behavior_2016 + wellbeing_2016 + affect_2016
wellbeing_2010 ~ behavior_2008 + affect_2008 + wellbeing_2008
wellbeing_2012 ~ behavior_2010 + affect_2010 + wellbeing_2010
wellbeing_2014 ~ behavior_2012 + affect_2012 + wellbeing_2012
wellbeing_2016 ~ behavior_2014 + affect_2014 + wellbeing_2014
wellbeing_2018 ~ behavior_2016 + affect_2016 + wellbeing_2016
behavior_2012 ~~ behavior_2010
behavior_2014 ~~ behavior_2012
behavior_2016 ~~ behavior_2014
behavior_2018 ~~ behavior_2016
affect_2012 ~~ affect_2010
affect_2014 ~~ affect_2012
affect_2016 ~~ affect_2014
affect_2018 ~~ affect_2016
wellbeing_2012 ~~ wellbeing_2010
wellbeing_2014 ~~ wellbeing_2012
wellbeing_2016 ~~ wellbeing_2014
wellbeing_2018 ~~ wellbeing_2016
behavior_2010 ~~ wellbeing_2010
behavior_2012 ~~ wellbeing_2012
behavior_2014 ~~ wellbeing_2014
behavior_2016 ~~ wellbeing_2016
behavior_2010 ~~ affect_2010
behavior_2012 ~~ affect_2012
behavior_2014 ~~ affect_2014
behavior_2016 ~~ affect_2016
behavior_2018 ~~ affect_2018
affect_2010 ~~ wellbeing_2010
affect_2012 ~~ wellbeing_2012
affect_2014 ~~ wellbeing_2014
affect_2016 ~~ wellbeing_2016
affect_2018 ~~ wellbeing_2018
'
fit <- sem(
model,
data = data,
ordered = ordered_vars,
estimator = "DWLS",
parameterization = "theta"
)
My questions are:
Does this specification make sense for modelling the cross-lagged relationships among these three observed variables?
Both behavior and wellbeing are consiedered ordinal (binary and 5-point scale, respectively). Should I include all waves of these variables in ordered_vars, including the baseline variables behavior_2008 and wellbeing_2008? Or I should should exclude the baseline variables (behavior_2008 and wellbeing_2008) from the ordered argument and treat them as continuous?