Skip to main content

Questions tagged [combinatorics]

Questions on the use of Mathematica in combinatorics, including the Combinatorica add-on package.

7 votes
3 answers
579 views

I have a list of functions and a list of arguments: funcs = {f,g,h} args = {a,b,c} I'd like to map one function from funcs to ...
thecommexokid's user avatar
0 votes
0 answers
15 views

Reference: arXiv:2505.00602 Reproduce Table I ...
138 Aspen's user avatar
  • 2,364
0 votes
1 answer
135 views

Let $G$ be a graph of order $n$. Then the visibility polynomial, $\mathcal{V}(G)$, of $G$ is defined as $$ \\ \mathcal{V}(G)=\sum_{i\geq 0} r_i x^{i} \\ $$ where $r_i$ denote the number of mutual-...
138 Aspen's user avatar
  • 2,364
0 votes
1 answer
111 views

Besides the Mathematica code provided in arXiv:2509.14006, I made some complement to it. ...
138 Aspen's user avatar
  • 2,364
5 votes
3 answers
549 views

Computing the integer hull of a polyhedral set creates the smallest convex set (polytope) containing all the integer points within the original polyhedral set. (? The two convex hulls have the same ...
138 Aspen's user avatar
  • 2,364
1 vote
0 answers
108 views

A DeBruijnSequence of order $n$ on a list of length $k$ is a cyclic sequence of length in which every possible block of length $n$ taken from the list occurs ...
138 Aspen's user avatar
  • 2,364
8 votes
2 answers
798 views

A Baxter permutation is one permutation $\sigma \in S_n$ which satisfies the following generalized pattern avoidance property: There are no indices $i<j<k$ such that $\sigma(j+1)<\sigma(i)&...
Ahamad's user avatar
  • 1
2 votes
0 answers
258 views

How to calculate Kazhdan-Lusztig Polynomials using Mathematica? References: TABLES OF KAZHDAN-LUSZTIG POLYNOMIALS Kazhdan-Lusztig Polynomials - Combinatorics kazhdan-Lusztig-polynomial-calculator (of ...
Ahamad's user avatar
  • 1
4 votes
0 answers
221 views

I need random Hamiltonian cycles in directed graphs. I guess for me it would be OK to mean by that choosing uniformly randomly from the set of all Hamiltonian cycles. ...
მამუკა ჯიბლაძე's user avatar
4 votes
1 answer
249 views

I've been exploring a generalization of the Monty Hall problem with $N=4$ doors, where the host exhibits a non-uniform bias when opening doors (e.g., favoring primes). My goal is to model how such ...
E. Chan-López's user avatar
0 votes
1 answer
105 views

How can I list all the permutations for each $n$ of the Hertzsprung's problem?
user967210's user avatar
9 votes
2 answers
704 views

In an $ n \times n $ grid, we define: The chess piece starts from the initial square and can only move up, down, left, or right to adjacent squares in each move. It cannot move outside the $ n \times ...
user avatar
2 votes
3 answers
176 views

In general, I have this initial data: n = 8; a = Range[0, n - 1]; b = RandomChoice[a]; c = RandomSample[a]; d = Partition[c, 2]; where ...
user avatar
1 vote
1 answer
241 views

I wrote this code: ...
user avatar

15 30 50 per page
1
2 3 4 5
37