29
$\begingroup$

I. Integrals

We have (typo corrected),

\begin{align} I_1 &=\pi =\int_{-\infty}^{\infty}\frac{(x-1)^2}{\color{blue}{(2x - 1)}^2 + (x^2 - x)^2}\,dx,\quad\text{(by Mark S.)}\\[1.8mm] I_3 &=\pi =\int_{-\infty}^{\infty}\frac{(x+1)^2}{\color{blue}{(x + 1)}^2 + (x^2 + x)^2}\,dx\\[1.8mm] I_5 &=\pi =\int_{-\infty}^{\infty}\frac{(x+1)^2}{\color{blue}{(x^2 - x - 1) }^2 + (x^2 + x)^2}\,dx\\[1.8mm] \color{red}{I_7} &=\pi =\int_{-\infty}^{\infty}\frac{(x+1)^2}{\color{blue}{(x^3 + 2x^2 - x - 1)}^2 + (x^2 + x)^2}\,dx\\[1.8mm] I_9 &=\pi =\int_{-\infty}^{\infty}\frac{(x-1)^2}{\color{blue}{(x^3 - 3x^2 + 1)}^2 + (x^2 - x)^2}\,dx\\[1.8mm] I_{11} &=\, ?? =\int_{-\infty}^{\infty}\frac{(x\pm1)^2}{\color{blue}{(x^5 + 3x^4 - 3x^3 - 4x^2 + x + 1)}^2 + (x^2 \pm x)^2}\,dx \end{align}

where those in blue are the minimal polynomials of $x=\frac{1}{2\cos(2\pi/p)}$ for $p=1,3,5,7,9,11$. These integrals have the form,

$$I_p =\int_{-\infty}^{\infty}\frac{(x\pm 1)^2}{F_p(x)}$$

where $F(x)=0$ is an equation with a solvable Galois group excepting $p=11$. The red integral $I_7$ is the one in the post, A nasty integral of a rational function,

$$\int_0^{\infty} \frac{x^8 - 4x^6 + 9x^4 - 5x^2 + 1}{x^{12} - 10 x^{10} + 37x^8 - 42x^6 + 26x^4 - 8x^2 + 1} \, dx = \frac{\pi}{2}$$ as well as in this post after some manipulation.


II. Question 1

Q: Why did the "pattern" of using minimal polynomials work then stop at $p=11$, and how can we make it continue by adjusting other parameters?


III. Alternative forms

Based on an insight from an old post, for $p=7$ we use the "negative" case on both its numerator and denominator. The denominator is a sextic again with a solvable Galois group, discriminant factor $12833,$ and we find,

$$\int_{-\infty}^{\infty}\frac{(x\color{red}-1)^2}{\color{blue}{(x^3 + 2x^2 - x - 1)}^2 + (x^2 \color{red}- x)^2}\,dx=\pi\sqrt{\frac{u}{\color{green}{12833}}}$$

where $u$ is a root of a nonic also with a solvable Galois group,

$$\small -\color{green}{12833}^3*1782434241^2 - 41120374319577904376201744753 u - 354521093943488815427187669 u^2 - 550802363395052799639795 u^3 - 176617825075778391189 u^4 + 116970252692553921 u^5 - 20201478347596 u^6 + 1625465206 u^7 - 63997 u^8 + u^9=0$$

For $p=9$, if we use the positive case, the denominator still is solvable. However, for $p=11$, then $F(x) = 0$ is not solvable for either case.


IV. Question 2

Q: So was the pattern interrupted because the denominator of $p=11$ no longer has a solvable Galois group?

$\endgroup$
11
  • $\begingroup$ Can somebody pls check $p=11$? I'm using a really old version of Mathematica and maybe it just didn't evaluate the integral correctly. $\endgroup$ Commented Nov 26, 2016 at 15:42
  • 5
    $\begingroup$ It mildly reminds me of the case of Borwein's integral. I am not sure if it can ever be related to this kind of integral, but it is possible that the same mechanism lies behind. Interesting! $\endgroup$ Commented Nov 27, 2016 at 2:14
  • $\begingroup$ @SangchulLee: Ahh, very nice observation. There might be a simple explanation yet. $\endgroup$ Commented Nov 27, 2016 at 2:17
  • 2
    $\begingroup$ For $p=1$, the minimal polynomial of $\dfrac{1}{2\cos(2\pi/p)}$ is $2x-1$, not $2x+1$. ${\displaystyle \int_{-\infty}^{\infty}}\dfrac{(x+1)^2}{(2x - 1)^2 + (x^2 + x)^2}\,dx=\pi\sqrt{\dfrac{109+17\sqrt{73}}{146}}$. However, we do have ${\displaystyle \int_{-\infty}^{\infty}}\dfrac{(x-1)^2}{(2x - 1)^2 + (x^2 - x)^2}\,dx=\pi$ $\endgroup$ Commented Nov 29, 2016 at 3:06
  • $\begingroup$ @MarkS.: Thanks for the spot. $\endgroup$ Commented Nov 29, 2016 at 3:48

1 Answer 1

8
+50
$\begingroup$

Partial answer. Mathematica 11.0.1.0 (64-bit Windows version) seems to symbolically evaluate $$ \int_{-\infty}^{\infty} \frac{(x - 1)^2}{(1 + x - 4 x^2 - 3 x^3 + 3 x^4 + x^5)^2 + (x^2 - x)^2} \, \mathrm{d}x =2\pi y $$ where $ y $ is a root (the 5th root in Mathematica's ordering), of \begin{align*} \small F(y)=55936138949897200689844509841956235222126377325 - 2082209926471466695895506312399091645554188710590 y + 49399208260228586110040380712822122163293326842296 y^2 - 904097593617672391563622547821611243428330356636656 y^3 + 14127632726315977701496334077804393041066245226028208 y^4 - 192534883415138070802102412843131348551007666040509024 y^5 + 2248032708977729589700543648210682328879792825038892288 y^6 - 22010013756272539692699272127690186099540607721493676800 y^7 + 177728824048935169179013735666882776433001119535910888192 y^8 - 1170270214760621202108304618484485542592211842152325435904 y^9 + 6226689208769791815298929222960276164825821302955689534464 y^{10} - 26437408929821178291367173439675032999610116594417230776320 y^{11} + 87275205150008062398776420803782617539547332212906935361536 y^{12} - 209632027731557385765045313738415590487122817707525011718144 y^{13} + 284829590179494874220555955086122649413365826411704845058048 y^{14} + 245738741392479529396402731465119601079938307163739661565952 y^{15} - 2744252632383133719563152613313766366008892259189754592296960 y^{16} + 9042239242455966498125021473251288480014205602523431668940800 y^{17} - 19642481348541153825949628077511851598796849639028033440972800 y^{18} + 31384454408136427453055038714389257858518560896664228069376000 y^{19} - 37847103175390150688294536889184184478935891337063789625344000 y^{20} + 34290036775233047407263179281808801381553538237009356390400000 y^{21} - 22732262960008031643227099738915285612779131750417374904320000 y^{22} + 10440433388762840105269721355193655567662001399784538112000000 y^{23} - 2974656530310569079556114222635017838466182586996359168000000 y^{24} + \color{blue}{831141777440}^5 y^{25}=0 \end{align*}

The discriminant $ d $ of the integrand's denominator

$$G(x)=(1 + x - 4 x^2 - 3 x^3 + 3 x^4 + x^5)^2 + (x^2 - x)^2$$

is $d=-2^5\times\color{blue}{831141777440}$. The discriminant of the $25$-deg $F(y)$ is divisible by $d^{65}$. However, its constant term is not integrally divisible by $ d $.

Moreover, $ y' = 831141777440 y $ is an algebraic integer. The discriminant of the minimal polynomial of $ y' $ is divisible by $d^{246}$. The constant term is divisible by $ d^{10} $, but the quotient is not a perfect power of an integer.

The positive case ++ passes the first test, but also fails on the second. The constant term is divisible by $ d^{990} $, but the quotient is not a perfect power.

$\endgroup$
1
  • 2
    $\begingroup$ +1. I made some edits to smoothen the flow. I guess the second test was just a peculiarity of the solvable nonic. But I believe the primary test is, given the discriminant $d$ of the denominator $G(x)$, then the discriminant of $F(y)$ should be divisible by a very high power of $d$, in this case $d^{65}$. The odds of a non-valid polynomial having that property seem to be nil. Plus the fact that it just so happens $d^5$ appears in the leading coefficient is a good sign of $2F(y)$'s validity. $\endgroup$ Commented Dec 1, 2016 at 11:03

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.