Let's say I've a function $y\colon [0,\infty]\to\mathbb{R}$ and it is periodic with $T$. If we take a look at the average value of this function over the hole region we can write:
$$\lim_{n\to\infty}\frac{1}{n}\int_0^nf(x)\,dx=\frac{1}{T}\int_0^Tf(x)\,dx$$
But how can prove that that is indeed true?
My work:
When $f(x)$ is periodic with T, the integral on the left hand side is infinite. So we can use lhopitals rule:
$$\lim_{n\to\infty}\frac{1}{n}\int_0^nf(x)\,dx=\lim_{n\to\infty}\frac{\frac{d}{dn}\left(\int_0^nf(x)\,dx\right)}{\frac{d}{dn}\left(n\right)}=\lim_{n\to\infty}\frac{f(n)}{1}=\lim_{n\to\infty}f(n)$$
So, we get:
$$\lim_{n\to\infty}f(n)=\frac{1}{T}\int_0^Tf(x)\,dx$$
But because $f(x)$ is periodic $f(\infty)$ does not have a 'value'. So this leads to noting.