$$\min_{x\in \mathbb{R}^n}\max_{i=1 \dots m}\{\langle\nabla f_i({\overline{x}}),x-\overline{x}\rangle\}+\sigma\|x-\overline{x}\|^2 \tag 1,$$
where $F : \mathbb{R}^n \to \mathbb{R}^m$, $F(x)=(f_{1}(x), \dots,f_{m}(x))$. I tried to solve this problem, but could not finish it. Could someone please help me?
This is part of my solution:
Solve problem (1) is equivalent to solve \begin{align} \min\limits_{x,z}&\quad z&\hspace{4cm} (2)& \\ \text{s.t}& \quad \langle \nabla f_i({\overline{x}}),x-\overline{x}\rangle+\sigma\|x-\overline{x}\|^2 \leq z&& \end{align} the Langragian dual problem associated with $(2)$ is:
$$\max_{\mu\geq 0}q(\mu)\tag 3,$$ with $$q(\mu)=\inf L(x,z,\mu)$$ and $$L(x,z,\mu)= z+\sum_{i=1}^m\mu_i(\langle \nabla f_i({\overline{x}}),x-\overline{x}\rangle+\sigma\|x-\overline{x}\|^2-z)$$. the problem (3) is equivalent to solve $$\max_{\mu\geq 0} \min_{x,z}\left(1-\sum\limits_{i=1}^m \mu_i\right)z + \sum \limits_{i=1}^m \mu_i(\langle\nabla f_i(\overline{x}),x-\overline{x}\rangle + \sigma\|x-\overline{x}\|^2), $$ $$(x^\ast,z^\ast)=\operatorname*{arg min}_{x,z} \left(1-\sum\limits_{i=1}^m \mu_i\right)z+\sum_{i=1}^m \mu_i(\langle \nabla f_i(\overline{x}),x-\overline{x}\rangle + \sigma\|x-\overline{x}\|^2),$$ $$\nabla_{x,z} L(x^\ast,z^\ast,\mu^\ast)=0$$ this is $$\begin{pmatrix} \sum\limits_{i=1}^m\mu_i^\ast\nabla f_i(\overline{x}) + \sum\limits_{i=1}^m 2\mu_i^\ast \sigma(x^\ast-\overline{x}) \\ 1-\sum\limits_{i=1}^m\mu_i^\ast \\ \end{pmatrix}=\begin{pmatrix} 0\\ 0 \end{pmatrix}$$ This problem has a solution when: $$\sum\limits_{i=1}^{m}\mu_{1}=1$$ and $$x^{\ast}=-\frac{\sum\limits_{i=1}^m\mu_i\nabla f_i(\overline{x})}{2\sigma\sum\limits_{i=1}^m\mu_i}+\overline{x}$$ $$x^{\ast}=-\frac{\sum\limits_{i=1}^m\mu_i\nabla f_i(\overline{x})}{2\sigma} + \overline{x}.$$ I do not know what else to do, what would be the solution to my original problem? and what would be the value of $z^{\ast}$?