Suppose $X_n$ is a sequence of random variables with $|X_n| \leq 1$. Assume $X_n \overset{p}{\to} X$. True or false: $Var(X_n)\to 0$. If false, give a counterexample. If true, give an argument.
Convergence of $\operatorname{Var}(X_n)$ if $|X_n| \le 1$ seems relevant. How much does the $X_n \to 0$ change what I have to say? Would appreciate a start in the right direction thanks!
__
Suppose $X_n$ is a sequence of random variables with $|X_n| \leq 1$. Assume $X_n \overset{p}{\to} X$. True or false: $Var(X_n)\to 0$. If false, give a counterexample. If true, give an argument. \
\indent The statement is false. Here we can offer a counter example.\ \ \indent Let $X \sim U[0,1]$. Since $X_n \overset{p}{\to} X$ we know $X_n \overset{d}{\to} X$. This implies that $Var(X_n) = Var(X)$. Using the definition of the continuous uniform distribution we can say that $f_X(x) = \frac{1}{1-0} = \frac{1}{1}$. We can then follow the steps outlined here and say:
\begin{equation*} \begin{aligned} & \operatorname{Var}(X) = \int_{-\infty}^\infty x^2 f_X(x) \, dx - \left( E(X) \right)^2 \\ & = \int_{-\infty}^0 0 f_X(x) \, dx + \int_0^1 x^2 f_X(x) \, dx + \int_0^\infty 0 f_X(x) \, dx - \left( \frac{0+1}{2} \right)^2 \\ & = \int_0^1 x^2 (1) \, dx - \frac{1}{4} \\ & = \left( \frac{x^3}{3} \right) \bigg\rvert_0^1 \\ & = \left( \frac{1}{3} - \frac{0}{3} \right) - \frac{1}{4} \\ & = \frac{1}{12} \end{aligned} \end{equation*}\