0
$\begingroup$

Prove the following inequality for $a,b,c, \in (1,\infty)$ , such that $abc = 10$ $$\log_a 10 + \log_b 10 + \log_c 10 \ge \sqrt{3 \log_a 10 * \log_b 10 * \log_c 10}$$

I will transform logarithms to base 10, so we have to prove that $$\frac{1}{\log_{10} a}+\frac{1}{\log_{10} b}+\frac{1}{\log_{10} c} \ge \sqrt{\frac{3}{\log_{10} a * \log_{10} b * \log_{10} c}}$$ We can use now the Cauchy inequality : $$\frac{1}{\log_{10} a}+\frac{1}{\log_{10} b}+\frac{1}{\log_{10} c} \ge \frac{(1+1+1)^2}{\log_{10} a + \log_{10} b + \log_{10} c} = \frac{9}{\log_{10} abc} = 9 $$ So we only have to prove that $$ 9 \ge \sqrt{\frac{3}{\log_{10} a * \log_{10} b * \log_{10} c}} \iff 27\log_{10} a * \log_{10} b * \log_{10} c \ge 1 $$ I got stuck here. I think we will have to continue using the inequality of means, since the numbers are positive, but I don't see where this can lead. Maybe I started wrong. What do you think ? I am here for any idea or solution you have. Thank you very much !

$\endgroup$
2
  • 1
    $\begingroup$ Your $27\log_{10} a * \log_{10} b * \log_{10} c \ge 1$ implies $$\log a^{27}bc\ge1\Rightarrow \log (a^{26}*10)\ge1\Rightarrow \log a^{26}\ge0$$ and this is true because definition of $a$ $\endgroup$ Commented Mar 7, 2024 at 20:57
  • $\begingroup$ Thanks for help! $\endgroup$ Commented Mar 7, 2024 at 21:05

1 Answer 1

1
$\begingroup$

Apply the inequality $(x+y+z)^2 \ge 3(xy+yz+zx)$ :

$$\begin{align} \left(\frac{1}{\log_{10} a}+\frac{1}{\log_{10} b}+\frac{1}{\log_{10} c}\right)^2 &\ge 3\left(\frac{1}{\log_{10} a}\frac{1}{\log_{10} b}+\frac{1}{\log_{10} b}\frac{1}{\log_{10} c}+\frac{1}{\log_{10} c}\frac{1}{\log_{10} a} \right)\\ &= 3\cdot\frac{\log_{10} a + \log_{10} b + \log_{10} c}{\log_{10} a\cdot \log_{10} b \cdot\log_{10} c}\\&= \frac{3}{\log_{10} a\cdot \log_{10} b \cdot\log_{10} c} \end{align}$$ The equality occurs if and only if $a = b= c = \sqrt[3]{10}$.

$\endgroup$
2
  • $\begingroup$ Thank you for your help! $\endgroup$ Commented Mar 7, 2024 at 21:04
  • $\begingroup$ @Unknowduck You're welcome! $\endgroup$ Commented Mar 7, 2024 at 21:15

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.