Let
- $T(n,k)$ be A083906, i.e., an integer coefficients such that $$ T(n,k) = [q^k] \sum\limits_{m=0}^{n} \binom{n}{m}_q. $$ Here $\binom{n}{m}_q$ is a Gaussian $q$-binomial coefficients.
- $R(n,k)$ be the family of polynomials defined recursively by $$ R(n,k) = x^k R(n-1,k) + R(n-1,k+1), \\ R(0,k) = 1. $$
I conjecture that $$ R(n,0) = \sum\limits_{k \geqslant 0} T(n,k) x^k. $$
Here is the PARI/GP program to check it numerically:
P(n) = sum(m=0, n, prod(k=0, m-1, (x^n - x^k) / (x^m - x^k)))
upto(n) = {my(v1, v2);
v1 = vector(n+1, i, 1);
v2 = vector(n+1, i, 0);
v2[1] = 1;
for(i=1, n,
v1 = vector(#v1-1, j, x^(j-1)*v1[j] + v1[j+1]);
v2[i+1] = v1[1]);
v2}
test(n) = upto(n) == vector(n+1, i, P(i-1))
Is there a way to prove it?