Suppose that $S_1, S_2, S_3,\ldots, S_n$ are subsets of $\{1,2,\ldots,m\}.$ Let $a_1,a_2,\ldots a_n$ be positive integers such that $|S_i|\geq a_i$ for $1\leq i\leq n,$ $|S_i\cup S_j|\geq a_i+a_j$ for $1\leq i < j\leq n,$... and so on $|S_i\cup S_2\cup\cdots S_n|\geq a_1+a_2+a_3+\cdots +a_n.$ Show that there exists subsets $N_i\subseteq S_i$ for $1\leq i\leq n$ such that $|N_i|=a_i$ for $1\leq i\leq n,$ and $N_i\cap N_j=\emptyset$ for $1\leq i < j\leq n.$
When n=2, if either $|S_1\setminus S_1\cap S_2 |\leq a_1$ (or $|S_2\setminus S_1\cap S_2 |\leq a_2$) we are done as we can choose $N_1\subseteq S_1\setminus S_1\cap S_2$ and $N_2\subseteq S_2.$ Suppose that $|S_1\setminus S_1\cap S_2 |> a_1.$ Let $a_1=|S_1|-|S_1\cap S_2|+r.$ Since $|S_1\cup S_2|\geq a_1+a_2,$ we get $a_2\leq |S_2|-r.$ Thus, we can $N_1=(S_1\setminus S_1\cap S_2)\cup M_0,$ where $M_0\subseteq S_1\cap S_2$ with $|M_0|=r$ and choose $N_2\subseteq S_2\setminus M_0.$ I couldnt extend this for $n\geq3.$