The denominator of the right-hand side,
$$ 1000000000000\epsilon^2+5656854000000\epsilon-705671 $$
has roots at
\begin{align*}
\epsilon_1 &= -2 \sqrt{2} - \frac{1\,828\,427}{1\,000\,000} \\
&= -5.656\,854\,124\,746{\dots} \\
\epsilon_2 &= 2 \sqrt{2} - \frac{1\,828\,427}{1\,000\,000} \\
&= 1.247\,461\,900\,976{\dots} \times 10^{-7}
\end{align*}
The permissible range of $\epsilon$ is $[0,1.247\,461\,938\,191\,918{\dots} \times 10^{-7})$, which contains $\epsilon_2$. (The minimum of the denominator occurs at $\epsilon = \frac{2\,828\,427}{1\,000\,000}$, so the denominator changes sign at $\epsilon_2$).
At $\epsilon_2$, the numerator,
\begin{align*}
&49000000000000\epsilon_2^2 − 2814154000000 \epsilon_2 + 40405422121 \\
&= 792 \times 10^{12} - 560 \sqrt{2} \times 10^{12} \\
&= 4.04{\dots} \times 10^{10}
\end{align*}
is not zero, so the right-hand side exhibits arbitrarily large values in the neighborhood of $\epsilon = \epsilon_2$. Since the right-hand side is unbounded, $n$ is unbounded, and has no maximum (or supremum).