3
$\begingroup$

My problem is: $$\int \frac{1}{(x-2)\sqrt{x^{2}-4x+3}}\, dx$$

Complete the square, $$\int \frac{1}{(x-2)\sqrt{(x-2)^{2}-1}}\, dx$$

I know I'm probably supposed to use $ \frac{d}{dx}\operatorname{arcsec}(u) = \frac{1}{|u|\sqrt{(u^2 - 1)}} * \frac{du}{dx}$ for the trig substitution

but what would that give me? Any help would be useful. I don't remember trig super well.

$\endgroup$
3
  • 1
    $\begingroup$ Set $x-2=u$ and hence $dx=du$. Then apply the result you already know. $\endgroup$ Commented Jul 20, 2014 at 20:05
  • 1
    $\begingroup$ So is it just arcsec(x-2)+C? $\endgroup$ Commented Jul 20, 2014 at 21:14
  • $\begingroup$ Substitute $t= \sqrt{x^{2}-4x+3} $ $$\int \frac{1}{(x-2)\sqrt{x^{2}-4x+3}}\, dx =\int \frac1{1+t^2}dt =\tan^{-1}t $$ $\endgroup$ Commented Mar 18, 2024 at 19:53

2 Answers 2

2
$\begingroup$

Use the trigonometric substitution $x=\sec{u}+2$. Then $dx=\sec{u}\tan{u}du$. Hence the integral becomes $$\int\frac{\sec{u}\tan{u}}{\sec{u}\tan{u}}du=u+c=\arccos{\left(\frac{1}{x-2}\right)}+c$$

$\endgroup$
0
1
$\begingroup$

HINT:

$$x-2=\cosh t$$

Then:

$$\sqrt{(x-2)^2-1}=\sinh t, \ \ \ dx=\sinh t dt$$

From which

$$\int \frac{1}{(x-2)\sqrt{(x-2)^{2}-1}} dx=\int \frac{1}{\cosh t \sinh t} \sinh t dt=\int \frac{1}{\cosh t} dt$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.