6
$\begingroup$

Evaluation of $\displaystyle \int\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx$

$\bf{My\; Try::}$ Given $\displaystyle \int\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx = \int \frac{\sqrt{\tan x}}{1+\sqrt{\tan x}}dx$

Now Let $\displaystyle \tan x = t^2\;,$ Then $\sec^2 xdx = 2tdt$ or $\displaystyle dx = \frac{2t}{1+t^4}dt$

So Integral is $\displaystyle \int\frac{t}{1+t}\cdot \frac{2t}{1+t^4}dt = 2\int\frac{t^2}{(1+t)\cdot (1+t^4)}dt$

Now How can I solve after that

Help me

Thanks

$\endgroup$
5
  • $\begingroup$ Split the last integral into partial fractions $\to \int {1\over 1 + t} - {(1+t)(t-1)^2\over 1 + t^4} dt$ $\endgroup$ Commented Jul 22, 2014 at 18:12
  • 1
    $\begingroup$ Hint: $x^4+1=(x^2+x\sqrt2+1)(x^2-x\sqrt2+1)$. $\endgroup$ Commented Jul 22, 2014 at 18:41
  • $\begingroup$ Use Lucien hint and completing the square in each term and then use partial fraction $\endgroup$ Commented Jul 22, 2014 at 21:25
  • 1
    $\begingroup$ I'm voting to reopen because the proposed duplicate concerns a definite integral, which allows slick solutions (by abusing symmetry). This question mainly focus on how to solve the indefinite integral. $\endgroup$ Commented Feb 28, 2020 at 11:45
  • $\begingroup$ This question isn't a duplicate of this. $\endgroup$ Commented Apr 5, 2020 at 18:05

2 Answers 2

9
$\begingroup$

By collecting all the suggestions, you should be able to prove that: $$\frac{2t}{(t+1)(t^4+1)}=\frac{t}{1+t^4}+\frac{t^3}{1+t^4}+\frac{1-t^2}{1+t^4}-\frac{1}{1+t},$$ and since $(1+t^4)=(1+\sqrt{2}t+t^2)(1-\sqrt{2}t+t^2)$, it follows that: $$\int\frac{2t\,dt}{(t+1)(t^4+1)}=\frac{1}{2}\arctan t^2+\frac{1}{4}\log(1+t^4)+\frac{1}{2\sqrt{2}}\log\frac{1+\sqrt{2}t+t^2}{1-\sqrt{2}t+t^2}-\log(1+t).$$ $\\$

Addendum

Suggestion for evaluating $\displaystyle{\int \frac{1 - t^2}{t^4 + 1}\,\mathrm{d}t}$: Write $$ \begin{aligned} \int- \frac{t^2 - 1}{t^4 + 1}\,\mathrm{d}t &= -\int \frac{1 - \dfrac{1}{t^2}}{t^2 + \dfrac{1}{t^2}}\,\mathrm{d}t \\ &=-\int \frac{1 - \dfrac{1}{t^2}}{\left(t + \dfrac{1}{t}\right)^2 - 2}\,\mathrm{d}t \end{aligned} $$

Now, set $\displaystyle{u = t + \frac{1}{t}}$ and $\mathrm{d}u = \left(1 - \dfrac{1}{t^2}\right)\,\mathrm{d}t$: $$ \begin{aligned} -\int \frac{\mathrm{d}u}{u^2 - 2} &= \dfrac{1}{2\sqrt{2}}\ln\left|\frac{u + \sqrt{2}}{u - \sqrt{2}} \right| + C \\ &=\frac{1}{2\sqrt{2}}\ln\left|\frac{t^2 + t\sqrt{2} +1}{t^2 - t\sqrt{2}+1} \right| + C \end{aligned} $$ Note that $t^2 + t\sqrt{2}+1 = \left(t + \dfrac{1}{\sqrt{2}}\right)^{\!2} + \dfrac{1}{2} >0$ and $t^2 - t\sqrt{2}+1 = \left(t - \dfrac{1}{\sqrt{2}}\right)^{\!2} + \dfrac{1}{2} >0$, then we can get rid of the absolute value bars: $$\int \frac{1-t^2}{t^4 + 1}\,\mathrm{d}t = \frac{1}{2\sqrt{2}}\ln\!\left(\dfrac{t^2 + t\sqrt{2}+1}{t^2 - t\sqrt{2}+1}\right) + C $$

This is a very famous technique.

$\endgroup$
2
$\begingroup$

$\int\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx=\int\frac{\sqrt{\sin x}(\sqrt{\sin x}-\sqrt{\cos x})}{\sin x-\cos x}dx=\int\frac{\sin x}{\sin x-\cos x}dx-\frac{1}{\sqrt 2}\int\frac{\sqrt{\sin 2x}}{\sin x-\cos x}dx$

Let $I_1=\int\frac{\sin x}{\sin x-\cos x}dx=\frac{1}{2}\int\frac{\sin x-\cos x+(\cos x+\sin x)}{\sin x-\cos x}dx=\frac{x}{2}+\frac{1}{2}ln|\sin x-\cos x|+c$

$$\int\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx=\frac{x}{2}+\frac{1}{2}ln|\sin x-\cos x|-\frac{1}{\sqrt 2}\int\frac{\sqrt{\sin 2x}}{\sin x-\cos x}dx$$

Let $I=\int\frac{\sqrt{\sin 2x}}{\sin x-\cos x}dx=\int\frac{\sqrt{\sin 2x}(\sin x-\cos x)}{1-\sin 2x}dx=\int\frac{\sqrt{(\sin x+\cos x)^2-1}}{2-(\sin x+\cos x)^2}(\sin x-\cos x)dx$

Put $t=\sin x+\cos x$

$I=\int\frac{\sqrt{t^2-1}}{2-t^2}dt$

Put $t=\sec u$

$I=\int\frac{\tan u}{2-\sec^2 u}(\sec u\tan u)du=\int\frac{\sin^2 u}{\cos u(2\cos^2 u-1)}du=\int\frac{\sin^2 u}{(1-\sin^2 u)(1-2\sin^2 u)}(\cos u)du$

$I=\int\left(\frac{1}{1-2\sin^2u}-\frac{1}{1-\sin^2 u}\right)(\cos u)du=-\frac{1}{2\sqrt2}ln|\frac{\sqrt2\sin u-1}{\sqrt2\sin u+1}|+\frac{1}{2}ln|\frac{\sin u-1}{\sin u+1}|+c$

$I=-\frac{1}{2\sqrt2}ln|\frac{\sin x+\cos x-\sqrt{2\sin 2x}}{\sin x+\cos x+\sqrt{2\sin 2x}}|+\frac{1}{2}ln|\frac{\sin x+\cos x-\sqrt{\sin 2x}}{\sin x+\cos x+\sqrt{\sin 2x}}|+c$

$$\int\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx=\frac{x}{2}+\frac{1}{2}ln|\sin x-\cos x|-\frac{1}{4}ln|\frac{\sin x+\cos x-\sqrt{2\sin 2x}}{\sin x+\cos x+\sqrt{2\sin 2x}}|+\frac{1}{2\sqrt2}ln|\frac{\sin x+\cos x-\sqrt{\sin 2x}}{\sin x+\cos x+\sqrt{\sin 2x}}|+c$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.