$\int\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx=\int\frac{\sqrt{\sin x}(\sqrt{\sin x}-\sqrt{\cos x})}{\sin x-\cos x}dx=\int\frac{\sin x}{\sin x-\cos x}dx-\frac{1}{\sqrt 2}\int\frac{\sqrt{\sin 2x}}{\sin x-\cos x}dx$
Let $I_1=\int\frac{\sin x}{\sin x-\cos x}dx=\frac{1}{2}\int\frac{\sin x-\cos x+(\cos x+\sin x)}{\sin x-\cos x}dx=\frac{x}{2}+\frac{1}{2}ln|\sin x-\cos x|+c$
$$\int\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx=\frac{x}{2}+\frac{1}{2}ln|\sin x-\cos x|-\frac{1}{\sqrt 2}\int\frac{\sqrt{\sin 2x}}{\sin x-\cos x}dx$$
Let $I=\int\frac{\sqrt{\sin 2x}}{\sin x-\cos x}dx=\int\frac{\sqrt{\sin 2x}(\sin x-\cos x)}{1-\sin 2x}dx=\int\frac{\sqrt{(\sin x+\cos x)^2-1}}{2-(\sin x+\cos x)^2}(\sin x-\cos x)dx$
Put $t=\sin x+\cos x$
$I=\int\frac{\sqrt{t^2-1}}{2-t^2}dt$
Put $t=\sec u$
$I=\int\frac{\tan u}{2-\sec^2 u}(\sec u\tan u)du=\int\frac{\sin^2 u}{\cos u(2\cos^2 u-1)}du=\int\frac{\sin^2 u}{(1-\sin^2 u)(1-2\sin^2 u)}(\cos u)du$
$I=\int\left(\frac{1}{1-2\sin^2u}-\frac{1}{1-\sin^2 u}\right)(\cos u)du=-\frac{1}{2\sqrt2}ln|\frac{\sqrt2\sin u-1}{\sqrt2\sin u+1}|+\frac{1}{2}ln|\frac{\sin u-1}{\sin u+1}|+c$
$I=-\frac{1}{2\sqrt2}ln|\frac{\sin x+\cos x-\sqrt{2\sin 2x}}{\sin x+\cos x+\sqrt{2\sin 2x}}|+\frac{1}{2}ln|\frac{\sin x+\cos x-\sqrt{\sin 2x}}{\sin x+\cos x+\sqrt{\sin 2x}}|+c$
$$\int\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx=\frac{x}{2}+\frac{1}{2}ln|\sin x-\cos x|-\frac{1}{4}ln|\frac{\sin x+\cos x-\sqrt{2\sin 2x}}{\sin x+\cos x+\sqrt{2\sin 2x}}|+\frac{1}{2\sqrt2}ln|\frac{\sin x+\cos x-\sqrt{\sin 2x}}{\sin x+\cos x+\sqrt{\sin 2x}}|+c$$