After using FullSimplify on an input expression, Mathematica ends up with
$$
-c L \sqrt{\frac{\delta \epsilon }{c L \sqrt{-\left((\delta -1) \epsilon (\delta +\epsilon ) \left(\text{nx}^2+\text{ny}^2+\text{nz}^2\right)\right)}}}-\frac{\delta
\sqrt{\frac{c (1-\delta )^{3/2} L}{\delta }} \sqrt[4]{\frac{\epsilon }{(\delta +\epsilon ) \left(\text{nx}^2+\text{ny}^2+\text{nz}^2\right)}}}{\delta -1}
$$
This output expression should in fact evaluate to zero, but Mathematica does not see it. How can I nudge it to the right result?
Note that $\delta$ and $\epsilon$ are both positive reals.
The code for the expression is
-((Sqrt[(c L (1 - δ)^(3/2))/δ] δ (ϵ/((nx^2 + ny^2 +
nz^2) (δ + ϵ)))^(1/4))/(-1 + δ)) -
c L Sqrt[(δ ϵ)/(c L Sqrt[-((nx^2 + ny^2 + nz^2) (-1 + δ) ϵ (δ + ϵ))])]
(expr) /. nx^2 + ny^2 + nz^2 -> 1 /. \[Delta] -> 2 /. \[Epsilon] -> 3 /. c -> 1 /. L -> 1 // N? $\endgroup$Limit, namelyLimit[e, {δ -> 0, ϵ -> 0}]returns 0. $\endgroup$ResourceFunction["RadicalDenest"][expr]evaluates to0$\endgroup$