A straightforward solution.
We have to find the diameter of the circle passing through three given points.
That is, the diameter $D$ of the circle which is circumscribed at the triangle whose vertices are the given points.
By Pythagoras' theorem, the lengths $x$, $y$, $z$ of the sides of the triangle are $12$, $\sqrt{15^2+8^2}=17$, and $\sqrt{15^2+20^2}=25$, respectively.
The semiperimeter $s=\frac{x+y+z}2$ of the triangle equals $27$. By Heron's formula, the triangle has area $A=\sqrt{s(s-x)(s-y)(s-z)}=\sqrt{27\cdot 15\cdot 10\cdot 2}=90$.
Finally, the diameter $D$ equals $\frac{xyz}{2A}=\frac{12\cdot 17\cdot 25}{180}=\frac{85}{3}$.
Bonus.
In this case the lengths $x$, $y$, $z$ of the sides of the triangle are $\sqrt{a^2+b^2}$, $\sqrt{c^2+d^2}$, and $\sqrt{(a+c)^2+(b+d)^2}$, respectively. Let $\gamma$ be the angle between the first two sides. Then the diameter $D$ of the circumscribed circle equals $\frac{z}{\sin\gamma}$. But $z^2=x^2+y^2-2xy\cos \gamma $, so $$(a+c)^2+(b+d)^2= a^2+b^2+ c^2+d^2-2\sqrt{(a^2+b^2)(c^2+d^2)}\cos\gamma,$$ $$\cos\gamma =-\frac{ ac+bd}{\sqrt{(a^2+b^2)(c^2+d^2)}},$$ $$\sin\gamma=\sqrt{1-\cos^2\gamma}=\frac{|ad-bc|}{\sqrt{(a^2+b^2)(c^2+d^2)}}.$$ Finally, $$D=\frac{\sqrt{(a^2+b^2)(c^2+d^2)( (a+c)^2+(b+d)^2)}}{|ad-bc|}.$$