1
$\begingroup$

The consumer has a utility function $U(x_1, x_2) = x_1 + x_2$.

Find the demand function and the indirect utility function.

My work:

Consider:

$ \left\{\begin{matrix} -u(x) \to min \\ \sum p_ix_i \le I \end{matrix}\right.$

$\mathcal{L}(x_1, x_2, \lambda) = -x_1 - x_2 - \lambda (p_1 x_1 + p_2 x_2 - I)$

$\frac{\partial \mathcal{L}}{\partial x_1} = -1 - \lambda p_1 \ge 0 \\ \frac{\partial \mathcal{L}}{\partial x_2} = -1 - \lambda p_2 \ge 0 \\ -x_1 - \lambda p_1x_1 = 0 \\ -x_2 - \lambda p_2x_2 = 0 \\ \lambda (p_1 x_1 + p_2 x_2 - I) = 0$

Let $x_i > 0$, then

$-1 - \lambda p_1 = 0 \\ -1 - \lambda p_2 = 0 \\ \lambda (p_1 x_1 + p_2 x_2 - I) = 0$

How to find $x_i$ with this system?

$p_1 = -\frac{1}{\lambda}, p_2 = -\frac{1}{\lambda}\\ \lambda (-\frac{1}{\lambda} x_1 - \frac{1}{\lambda} x_2 - I) = 0\\ x_1 = -\lambda I - x_2$

I would be very grateful for any tips.

Another attempt:

(1) Let $x_i > 0$, then

$\frac{\partial \mathcal{L}}{\partial x_1} = -1 - \lambda p_1 = 0 \Rightarrow \lambda = -\frac{1}{p_1}\\ \frac{\partial \mathcal{L}}{\partial x_2} = -1 - \lambda p_2 = 0 \Rightarrow \lambda = -\frac{1}{p_2} $

So

$-\frac{1}{p_1} = -\frac{1}{p_2} \Rightarrow p_1 = p_2$

$p_1 x_1 + p_1 x_2 = I \Rightarrow x_1 + x_2 = \frac{I}{p_1}$

Any combination $ x_i > 0 $ satisfying $ x_1 + x_2 = \frac{I}{p_1} $ is optimal.

(2) Let $x_1 > 0, x_2 = 0$, then

$ x_1 = \frac{I}{p_1}, \; x_2 = 0 $ and $ U = \frac{I}{p_1} $

(3) Let $x_1 = 0, x_2 > 0$, then

$ x_1 = 0, \; x_2 = \frac{I}{p_2} $ and $ U = \frac{I}{p_2} $

New contributor
Antony is a new contributor to this site. Take care in asking for clarification, commenting, and answering. Check out our Code of Conduct.
$\endgroup$
2
  • 1
    $\begingroup$ Check your partial derivatives of the Lagrangian. $\endgroup$ Commented Nov 25 at 12:34
  • $\begingroup$ The "other attempt" is correct. $\endgroup$ Commented 2 days ago

0

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.