If it is given $$\log_ac=\log_{\sqrt{a}}b+\log_ab^2+\log_{a^2}b^3+\log_{a^4}b^4+\log_{a^8}b^5+\cdots$$ and $a,b,c>1$ then find the least value of $$\log_a{bc}+\log_bac+\log_cab$$
Rewriting the first equation after doing some manipulation gives $$\log_ac=\log_{\sqrt{a}}b+\sum_{i=0}^{\infty}\log_{a^{2^i}}b^{i+2}$$ $$\implies \log_ac=2\log_{a}b+\log_ab\cdot\sum_{i=0}^{\infty}\frac{i+2}{2^i}$$ $$\implies \log_ac=2\log_{a}b+6\log_ab$$ $$\implies \log_ac=8\log_{a}b$$ $$\implies c=b^8$$ Now, $$\log_a{bc}+\log_bac+\log_cab=\log_ab+\log_ac+\log_ba+\log_bc+\log_ca+\log_cb$$ $$=\log_ab+\log_ac+\frac{1}{\log_ab}+\frac{1}{\log_ac}+8+\frac18$$ $$\ge2+2+8+\frac{1}{8}=\boxed{12.125}$$
However, I don't think that it is the right answer as in the original question it was asked to find the value of $w+x+y+z$ where least value was equal to $\displaystyle\frac{w+x\sqrt{y}}{z}$ where $w,x,z$ are relatively prime and $y$ is not a square of any prime.
Am I right or wrong. Guide me if I'm wrong. Any help is greatly appreciated.