0
$\begingroup$

I am familiar with $L$-functions for $\operatorname{GL}_2\times \operatorname{GL}_1$ (e.g. Bump 'Automorphic Forms and Representations'), and currently reading on $\operatorname{GL}_n\times \operatorname{GL}_m$ $L$-functions. I am following Cogdell's articles in "Lectures on Automorphic $L$-functions" and also "$L$-functions and Converse Theorems for $GL_n$". Assume $m<n$. We have the operator $$\Bbb P\varphi(p) = |\det p|^{-\frac{n-m-1}2}\int_{Y(k)\setminus Y(\Bbb A)}\varphi\left(y\begin{pmatrix} p&0\\0&I_{n-m-1}\end{pmatrix}\right)\psi^{-1}(y)\mathrm dy$$ Here $\varphi$ is a cusp form on $\operatorname{GL}_n$, $Y$ is the unipotent of the parabolic subgroup of $\operatorname{GL}_n$ radical corresponding to the partition $(m+1,1,\dots,1)$, $\psi$ a character of $N_n(\Bbb A)$, and $p$ is in the mirabolic subgroup of $\operatorname{GL}_{m+1}$. Then for $\varphi\in V_\pi,\varphi'\in V_{\pi'}$ where $\pi,\pi'$ are cuspidal representations of $\operatorname{GL}_n,\operatorname{GL}_m$ resp., we introduce the global zeta integral $$I(s,\varphi,\varphi')=\int_{\operatorname{GL}_m(k)\backslash \operatorname{GL}_m(\Bbb A)}\Bbb P\varphi\begin{pmatrix}h&0\\0&1\end{pmatrix}\varphi'(h)|\det h|^{s-\frac12}\mathrm dh.$$

Then it is proven that $$I(s,\varphi,\varphi')=\Psi(s,W_\varphi, W'_{\varphi'}):=\int_{N_m(\Bbb A)\backslash \operatorname{GL}_m(\Bbb A)}W_\varphi\begin{pmatrix}h&0\\0&I_{n-m}\end{pmatrix}W'_{\varphi'}(h)|\det h|^{s-\frac{n-m}2}\mathrm dh,$$ which is good because this is Eulerian if $\varphi,\varphi'$ are decomposable in $\pi,\pi'$. Here $W,W'$ are the Whittaker functions corresponding to $\psi,\psi^{-1}$.

Consider the involution $g^\iota={}^tg^{-1}$. Then it follows easily that we have the functional equation $I(s,\varphi,\varphi')=\widetilde I(1-s, \widetilde \varphi,\widetilde\varphi')$ where $\widetilde\varphi(g)=\varphi(g^\iota),\widetilde\varphi'(g)=\varphi'(g^\iota)$, and $$\widetilde I(s,\varphi,\varphi')=\int_{\operatorname{GL}_m(k)\backslash \operatorname{GL}_m(\Bbb A)}\widetilde{\Bbb P}\varphi\begin{pmatrix}h&0\\0&1\end{pmatrix}\varphi'(h)|\det h|^{s-\frac12}\mathrm dh$$ with $\widetilde{\Bbb P}=\iota\circ\Bbb P\circ\iota$.

Now it is claimed that the Eulerian integral representation for $\widetilde I$ is a little different, namely $$\widetilde I(1-s, \widetilde \varphi,\widetilde\varphi') = \widetilde \Psi(1-s;\rho(w_{n,m})\widetilde W_\varphi, \widetilde W'_{\varphi'}),$$ where $$\widetilde \Psi(s;W,W') = \int_{N_m(\Bbb A)\backslash \operatorname{GL}_m(\Bbb A)}\int_{M_{n-m-1,m}(\Bbb A)}W\begin{pmatrix}h&0&0\\x&I_{n-m-1}&0\\0&0&1\end{pmatrix}\mathrm dx\,W'(h)|\det h|^{s-(n-m)/2}\mathrm dh,$$ and $w_{n,m}=\begin{pmatrix}I_m&0\\0&w_{n-m}\end{pmatrix}$ with $w_{n-m}$ being the standard long Weyl element in $\operatorname{GL}_{n-m}$. Also $\widetilde W(g)=W(w_ng^\iota)$. It is completely unclear to me where this expression comes from. He just says that the inner integral is a ''remnant of $\widetilde{\Bbb P}$''. I don't see why $\widetilde{\Bbb P}$ should change that much, it seems to me that the same argument that showed $I(s,\varphi,\varphi')=\Psi(s,W_\varphi, W'_{\varphi'})$ before now shows that \begin{align*} \widetilde I(1-s, \widetilde \varphi,\widetilde\varphi') &= \int_{N_m(\Bbb A)\backslash \operatorname{GL}_m(\Bbb A)}W_{\varphi}\begin{pmatrix}h^\iota&0\\0&I_{n-m}\end{pmatrix}W'_{\widetilde\varphi'}(h)|\det h|^{1-s-\frac{n-m}2}\mathrm dh\\ &=\Psi(1-s, W_{\varphi}\circ\iota, W'_{\widetilde\varphi'}) \end{align*} is Eulerian. What is the need for this different $\widetilde\Psi$?

$\endgroup$

0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.