I see the proccedure of:
How I find the limit of $\frac{2^n}{e^{p(n)l}}$
I didn’t understand how it applies in my case:
$$ \lim_{x\to\infty} \frac{3^{x}}{e^{x}}=+\infty$$
$$ \lim_{x\to\infty} \frac{\ln(3)^{x}}{\ln(e^{x})}$$
$$ \lim_{x\to\infty} \ln(3)^{x} - \lim_{x\to\infty}\ln(e^{x})$$
$$ \lim_{x\to\infty} x\ln 3 - \lim_{x\to\infty}x\ln e$$
$$ \lim_{x\to\infty} x\ln 3 - \lim_{x\to\infty}x\cdot 1$$
$$ \infty\cdot\ln 3 - \infty\cdot 1$$
$$ \infty\cdot\ln 3 - \infty\cdot 1$$
$$ \infty\cdot1.098 - \infty\cdot 1\approx0$$
I don’t know if it is wrong but the result is not $$ 1 $$
I suppose applying Neperian logarithm on everything is arbitrary.