inspired by the attached fractal image, how can I generate the same effect with MMA, but with the possibility of inserting a specific text?
Any help is welcome, thank you in advance.
The answer may not be exactly what you were looking for, but I have recreated something similar to the GIF shown above. Below is the code I used:
generatetxt[cont_, {cx_, cy_}, r_, theta_] :=
Rotate[Text[
Style[cont, FontSize -> r 220, Bold,
FontFamily -> "Times New Roman"], {cx, cy}, {0, 0}], theta]
generatesequencetxt[sequence_] :=
Module[{},
MapThread[
generatetxt[#1, Sequence @@ #2] &, {{"T", "R", Rotate["T", Pi/2],
Rotate["T", Pi/2]}, sequence}]]
generateSequence[pi_, r1_, r_, angle_] :=
Module[{norm = {Cos[angle], Sin[angle]}, pts, rL, rL1},
rL = {r1, r, r, r}; rL1 = Accumulate[{0, r1/2 + r/2, r, r}];
pts = Table[{pi + norm *rL1[[i]], rL[[i]], angle}, {i, 1, 4}]]
iteration[sequence_] := Module[{rc, anglec, rn}
, rc = sequence[[-1, 2]]
; anglec = sequence[[-1, 3]]
; Sequence @@ {generateSequence[sequence[[3, 1]], rc, rc 0.65,
anglec - Pi/2],
generateSequence[sequence[[4, 1]], rc, rc 0.65, anglec + Pi/2]}]
Manipulate[x = 0.5 Exp[0.2 t] Cos[t]; y = 0.5 Exp[0.2 t] Sin[t];
res = generatesequencetxt /@
Flatten[NestList[((iteration /@ #) &), {generateSequence[{x, y},
Sqrt[x^2 + y^2], Sqrt[x^2 + y^2] 0.65, ArcTan[x, y] - 2.5]},
6], 1];
Graphics[{White, res[[1]], res[[2 ;;, 2 ;;]]}, Background -> Black,
PlotRange -> {{-1, 1}, {-1, 1}}], {t, 5, 3}, TrackedSymbols :> {t},
SynchronousUpdating -> False]
Please note that this is just a rough version. Hopefully, it can inspire you and help you achieve the desired outcome.

Needs time to show the idea.
the structure of the fractal tree.
Clear["Global`*"];
λ = .5;
l0 = {{{0, 0}, {0, 100}}, "Left"};
rotate[{{x1_, y1_}, {x2_, y2_}}, angle_,
relative_] := {(1 - relative) {x1, y1} +
relative {x2, y2}, (1 - relative) {x1, y1} + relative {x2, y2} +
RotationTransform[angle][λ ({x2, y2} - {x1, y1})]};
add[{{{x1_, y1_}, {x2_, y2_}}, type_}] :=
Which[type == "Left",
Return[{{rotate[{{x1, y1}, {x2, y2}}, 90 Degree, 1.],
"Left"}, {rotate[{{x1, y1}, {x2, y2}}, -90 Degree, .5],
"Right"}}], type == "Right",
Return[{{rotate[{{x1, y1}, {x2, y2}}, -90 Degree, 1.],
"Right"}, {rotate[{{x1, y1}, {x2, y2}}, 90 Degree, .5], "Left"}}]]
n = 5;
list = NestList[Flatten[add /@ #, 1] &, {l0}, n];
Graphics[{Map[{#[[2]] /. {"Right" -> Red, "Left" -> Blue},
Line[#[[1]]]} &, list, {2}]}]
_Text in BoundaryDiscretizeGraphics)r = BoundaryDiscretizeGraphics[
Text[Style["R", FontFamily -> Times]], _Text];
t = BoundaryDiscretizeGraphics[
Text[Style["T", FontFamily -> Times]], _Text];
reg = RegionUnion[TransformedRegion[r, RotationTransform[-90 Degree]],
TransformedRegion[t, TranslationTransform[{0, -8}]],
TransformedRegion[t, TranslationTransform[{0, -16}]]];
{{xmin, xmax}, {ymin, ymax}} = RegionBounds[reg];
{a, b, c,
d} = {{xmin, ymin}, {xmax, ymin}, {xmax, ymax}, {xmin, ymax}};
reg = ScalingTransform[.95 {1, 1}]@reg
factor = .68;
M = Mean[{a, b, c, d}];
translate1[{p_, q_}] :=
GeometricTransformation[reg,
TranslationTransform[factor*q + (1 - factor) p - M]@*
RotationTransform[{{0, -1}, q - p}, M]@*
ScalingTransform[Norm[q - p]/Norm[d - a]*{1, 1}, M]];
translate2[{p_, q_}] :=
GeometricTransformation[ReflectionTransform[{1, 0}, M]@reg,
TranslationTransform[factor*q + (1 - factor) p - M]@*
RotationTransform[{{0, -1}, q - p}, M]@*
ScalingTransform[Norm[q - p]/Norm[d - a]*{1, 1}, M]]; Graphics[
Map[{Which[#[[2]] == "Left", {Blue, translate1@#[[1]]}, #[[2]] ==
"Right", {Red, translate2@#[[1]]}]} &, list, {2}]]
Tlooks likeEwhen rotated 90 degrees, with this particular font. Do you have a word in mind, or a font? $\endgroup$getText[text_, r_, theta_] := Translate[Rotate[Text[text], theta], {-r Sin[theta], r Cos[theta]}] Manipulate[ Graphics[{ White, Table[ getText[ Style["IV Olimpiada de Mátemática", FontSize -> 2 (theta + offset)/Pi ], 0.7 (theta + offset)/Pi, (theta + offset)] , {offset, 0, 100, Pi/2}] }, Background -> Black, PlotRange -> 10 ], {theta, 0, 10 Pi} ]$\endgroup$Manipulate. It was removed when posting the code as a comment. And again, please note that this is just a rough start. $\endgroup$