Skip to main content

Questions tagged [measure-theory]

Questions about abstract measure and Lebesgue integral theory. Also concerns such properties as measurability of maps and sets.

4 votes
1 answer
252 views

The counting measure on $\mathbb{R}^n$ is a map that takes a subset $A$ of $\mathbb{R}^n$ and returns its cardinality if it is finite or the symbol $\infty$ if it is infinite. So, if $A\subseteq\...
2 votes
1 answer
133 views

The following version of a de la Vallée Poussin - criterion would be very helpful to me if it would be true. Can you say something about the truth value or give a reference? Given a positive random ...
20 votes
1 answer
2k views

Let $U$ be the set of all nonempty subsets of $[0,1]$ that are a union of finitely many closed intervals (where an "interval" that is a single point does not count as an interval). Does ...
4 votes
1 answer
201 views

Let $(X,\mathcal X)$ and $(Y,\mathcal Y)$ be measurable spaces, $\pi \colon \mathcal Y\times X \to [0,1]$ a Markov kernel. We assume that it is measurably dominated, i.e. there is a $\sigma$-finite ...
0 votes
0 answers
59 views

I have a Markov kernel $(t,A) \mapsto \mathbb{Q}_t(A)$ from a standard Borel space $(T, \mathcal{T})$ into another standard Borel space $(\Omega, \mathcal{F})$. Also, for $t \neq s$, $\mathbb{Q}_t \...
4 votes
1 answer
270 views

A metric space $(X,d)$ satisfies the Hoffmann-Jørgensen (HJ) property if for any two Borel measures $\mu_1,\mu_2$ we have that $\mu_1(B_r(x))=\mu_2(B_r(x))$ for all $r>0$ and $x\in X$ implies $\...
7 votes
2 answers
1k views

Is there a definable (in Zermelo Fraenkel set theory with choice) collection of non measurable sets of reals of size continuum? More verbosely: Is there a class A = {x: \phi(x)} such that ZFC proves "...
5 votes
1 answer
1k views

Let $\mu$ and $\nu$ be two probability measures on $\mathbb{R}^{d}$. Let $T : \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a measurable map such that $T_{\ast} \mu = \nu$. I can disintegrate $\gamma :...
5 votes
1 answer
177 views

On a measurable space $(E,\mathcal E)$, a stochastic kernel is a function $p\colon E\times \mathcal E\to [0,1]$ such that: for each $x\in E$, the function $A\mapsto p(x,A)$ is a probability measure; ...
11 votes
2 answers
1k views

Let $\mathcal{E}$ be the class of Lebesgue-measurable subsets of $\mathbb{R}$. The notion of $(\mathcal{E},\mathcal{E})$-measurable function is a bit pathological since lots of continuous functions ...
2 votes
0 answers
89 views

Let $\nu$ be a probability measure equivalent to $\mathbf{1}_{\mathbb{R}_+}(y) \, \lambda(dy)$. Let $\pi$ be a probability measure on $\mathbb{R}^2$ of second marginal $\nu$, such that $\nu(dy)$-a.e., ...
1 vote
1 answer
154 views

Let $\mu$ be a finite measure on some measurable space $(X, \Sigma)$ and consider the topological vector space $L^0(\mu)$ of all real-valued measurable functions on $X$ with respect to convergence in ...
1 vote
1 answer
139 views

Consider a measure space $(S,\mu)$ and assume that $\mu(S)=1$. We consider the quantile function (or nonincreasing rearrangement) of a real valued function $f:S\to\mathbb{R}$ as the function \begin{...
5 votes
1 answer
2k views

The Borel-Cantelli lemma is often stated for a probability space or spaces with finite measure. But it seems to me that it still holds if the space $X$ is of infinite measure. I seem to be able to ...
2 votes
1 answer
296 views

I am studying the problem of representing positive linear functionals on the space of bounded norm-continuous functions on a separable infinite-dimensional Hilbert space $H$. A known challenge is that ...

15 30 50 per page
1
2 3 4 5
216