Skip to main content

Questions tagged [measure-theory]

Questions about abstract measure and Lebesgue integral theory. Also concerns such properties as measurability of maps and sets.

4 votes
1 answer
252 views

The counting measure on $\mathbb{R}^n$ is a map that takes a subset $A$ of $\mathbb{R}^n$ and returns its cardinality if it is finite or the symbol $\infty$ if it is infinite. So, if $A\subseteq\...
Cosine's user avatar
  • 1,038
2 votes
1 answer
133 views

The following version of a de la Vallée Poussin - criterion would be very helpful to me if it would be true. Can you say something about the truth value or give a reference? Given a positive random ...
unwissen's user avatar
  • 784
0 votes
0 answers
59 views

I have a Markov kernel $(t,A) \mapsto \mathbb{Q}_t(A)$ from a standard Borel space $(T, \mathcal{T})$ into another standard Borel space $(\Omega, \mathcal{F})$. Also, for $t \neq s$, $\mathbb{Q}_t \...
MrTheOwl's user avatar
  • 208
4 votes
1 answer
201 views

Let $(X,\mathcal X)$ and $(Y,\mathcal Y)$ be measurable spaces, $\pi \colon \mathcal Y\times X \to [0,1]$ a Markov kernel. We assume that it is measurably dominated, i.e. there is a $\sigma$-finite ...
Nathaël's user avatar
  • 105
4 votes
1 answer
270 views

A metric space $(X,d)$ satisfies the Hoffmann-Jørgensen (HJ) property if for any two Borel measures $\mu_1,\mu_2$ we have that $\mu_1(B_r(x))=\mu_2(B_r(x))$ for all $r>0$ and $x\in X$ implies $\...
user479223's user avatar
  • 2,345
5 votes
1 answer
177 views

On a measurable space $(E,\mathcal E)$, a stochastic kernel is a function $p\colon E\times \mathcal E\to [0,1]$ such that: for each $x\in E$, the function $A\mapsto p(x,A)$ is a probability measure; ...
DRJ's user avatar
  • 286
2 votes
0 answers
89 views

Let $\nu$ be a probability measure equivalent to $\mathbf{1}_{\mathbb{R}_+}(y) \, \lambda(dy)$. Let $\pi$ be a probability measure on $\mathbb{R}^2$ of second marginal $\nu$, such that $\nu(dy)$-a.e., ...
thibault_student's user avatar
1 vote
1 answer
154 views

Let $\mu$ be a finite measure on some measurable space $(X, \Sigma)$ and consider the topological vector space $L^0(\mu)$ of all real-valued measurable functions on $X$ with respect to convergence in ...
iolo's user avatar
  • 713
1 vote
1 answer
139 views

Consider a measure space $(S,\mu)$ and assume that $\mu(S)=1$. We consider the quantile function (or nonincreasing rearrangement) of a real valued function $f:S\to\mathbb{R}$ as the function \begin{...
Daan's user avatar
  • 169
16 votes
2 answers
989 views

Is there a formula $\phi$ in the language of set theory such that $$ \text{ZFC proves } \exists x \in \mathbb{R}:\text{ the set }A_x​:=\{y\in\mathbb{R}:\phi(x,y)\} \text{ is not Lebesgue measurable?} $...
Alexander's user avatar
  • 237
0 votes
0 answers
65 views

In teaching multivariable Riemann integration, I was trying to develop the theory of successive Riemann integrals (so all start with the one-dimensional case familiar to the students) as far as ...
Hua Wang's user avatar
  • 1,118
2 votes
1 answer
125 views

I am really wondering how to prove this lemma from the book 'Counting processes and survival analysis'. No need for the first and second point, just the third point, why does the maximum random ...
RRRRLL's user avatar
  • 35
3 votes
0 answers
251 views

I'm interested in Freiling's axiom of symmetry and I specifically wonder if it may be proven from more basic axioms about measures on $\mathbb R^n$, in the sense that there is a sequence of measures $\...
Roee Sinai's user avatar
0 votes
0 answers
92 views

Theorem 15.1 in Classical Descriptive Set Theory by Kechris states: (i) Let $X, Y$ be Polish spaces and $f:X\rightarrow Y$ be continuous. If $A\subseteq X$ is Borel and $f|_A$ is injective, then $f(A)$...
guest1's user avatar
  • 177
2 votes
1 answer
118 views

Suppose we have two measure spaces, $(\Omega, \mathscr{F}, \mu)$ and $(\Psi, \mathscr{G}, \nu)$, with $\mu(\Omega) = \nu(\Psi) < \infty$, and we consider the set of measure isomorphisms mod 0 ...
cgmil's user avatar
  • 319

15 30 50 per page
1
2 3 4 5
216