4
$\begingroup$

If $a > b > 1$ and $\frac{1}{log_a(b)} + \frac{1}{log_b(a)} = \sqrt{1229}$ , find the value of :- $\frac{1}{log_{ab}(b)} - \frac{1}{log_{ab}(a)}$ .

What I Tried :- I tried the problem this way :-

As $log_a(b) = \frac{log_b(b)}{log_b(a)}$ , we have $\frac{1}{log_a(b)} = \frac{log_b(a)}{log_b(b)} = log_b(a).$ So :-

$$log_b(a) + \frac{1}{log_b(a)} = \sqrt{1229}$$ $$\rightarrow \frac{log(a)}{log(b)} + \frac{log(b)}{log(a)} = \sqrt{1229}$$ $$\rightarrow \frac{(log(a))^2+(log(b))^2}{log(a)log(b)} = \sqrt{1229}$$

Now :-

$$\frac{1}{log_{ab}(b)} - \frac{1}{log_{ab}(a)}$$ $$\rightarrow \frac{log(a) + log(b)}{log(b)} - \frac{log(a) + log(b)}{log(a)}$$ $$\rightarrow \frac{(log(a))^2 + log(a)log(b) - log(a)log(b) - (log(b))^2}{log(a)log(b)}$$ $$\rightarrow \frac{(log(a))^2 - (log(b))^2}{log(a)log(b)}$$ $$\rightarrow \sqrt{1229} - \frac{2(log(b))^2}{log(a)log(b)}$$

I could conclude only upto this, other than that I have no idea . Now can anyone help me?

$\endgroup$

3 Answers 3

3
$\begingroup$

$$\dfrac{1}{\log_{ab}a}-\dfrac{1}{\log_{ab}b}=\log_ab\,-\log_ba \tag{1}$$

Let $\log_b a=x$, we get the first expression to be $$x +\frac{1}{x}=\sqrt{1229} \tag{2}$$,

Now, squaring (1) and (2), we see (1) becomes:

$$x^2+\frac{1}{x^2} + 2 = 1229\tag{3}$$

and expression (2) becomes:

$$x^2-2+\frac{1}{x^2} = A^2\tag{4}$$

Subtracting (3) and (4), we get:

$$1229-A^2=4$$

Therefore, A=$\sqrt{1225}$

$\endgroup$
1
  • $\begingroup$ Oh , completely forgot about the thing that we get a equation like that , I just wasted my time . $\endgroup$ Commented Aug 31, 2020 at 14:09
3
$\begingroup$

The formula $(x-y)^2=(x+y)^2-4xy$ gives you required expression =$sqrt(1225)$=35.

$\endgroup$
2
$\begingroup$

Instead of trying to find the values of $\log b$ and $\log a$, just look at the equation $\log_b a + \frac 1{\log_b a} = 1229$.

Now, if $(ab)^x = a$, then $a^xb^x = a$ so $b^x = a^{1-x}$, then $a = b^{\frac x{1-x}}$, therefore $\frac x{1-x} = \log_b a$, therefore $x = \frac{\log_b a}{\log_b a + 1} = \log_{ab} a$.

Similarly, if $(ab)^y = b$, then $a^y = b^{1-y}$ so $a = b^{\frac{1-y}y}$ so $\frac {1-y}y = \log_b a$ so $y = \frac 1{\log_b a + 1} = \log_{ab} b$.


We have to find $\frac 1y - \frac 1x = {\log_b a+1} - \frac{(\log_b a + 1)}{\log_b a} = \log_b a - \frac 1{\log_b a}$.

Let $\log_b a = z$. Then $z + \frac 1z = \sqrt{1229}$, and we have to find $z- \frac 1z$. This is usual from $$ \left(z+\frac 1z\right)^2 - \left(z-\frac 1z\right)^2 = 4 \times z \times \frac 1z = 4 $$

and the fact that $a>b$ so $z=\log_b a >1$, hence $z-\frac 1z< 0$. (So the square root is the positive square root).

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.